
Atomistic Solution Models
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Consider a system with N interacting particles and a number of energy states numbered with the j index

Partition Function

A = -kBT ln(Z)

Energy states will be degenerate, that is more than one state can have the same energy, then,

Relative to T = 0K



2

Ideal Solution Model

Sterling’s Approximation



3

Ideal Solution Model
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Regular Solution Model

Coordination number ”z” z = 6 for Cartesian Coordinates

NAA = number of A-A contacts with an energy of uAA
Lattice has N sites
Total number of pairs is zN/2
Average energy of pure A is UA = zNAuAA/2

For A atoms there are zNA pairwise interactions made up of 2 interactions for each A and one for each AB
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Regular Solution Model
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Regular Solution Model

µA ~ dG/dxA 
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Entropy of Mixing

A) Here we consider a combinatorial entropy of mixing and a binary enthalpy of mixing

B) A change in organization can also occur which leads to an additional entropic term

Ω!" = 𝑧𝑁! 𝜔!" − 𝑇𝜂!"
 = 𝑧𝑁!𝜔!" 1 − $

%
Where 𝜏 = &!"

'!"
 , a critical temperature

 Tf = DHf/DSf

Ω!" = 𝑧𝑁!𝜔!"
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Vibrational Contribution

With vibrational part

ZA is vibrational partition function of A
U’ is internal energy minus vibrational part

G = H –TS  so last term is the non-configurational (non-combinatorial) entropic terms

GA=NAlnZA = lnZA
NA

Hildebrandt type parameter for 
vibrational contributions
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Excess molar Gibbs energy of mixing for quasi-regular solution

G = H –TS so first term is enthalpic, second is entropic

t is a characteristic 
temperature, when T = t ideal 
solution behavior is seen
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T = t Ideal
T > t Mix
T < t Demix

For Positive W

T = t Ideal
T > t Demix
T < t Mix

For Negative W

For W = 0
 Ideal
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T = t Ideal
T > t Mix
T < t Demix

For Positive W

T = t Ideal
T > t Demix
T < t Mix

For Negative W

For W = 0
 Ideal

c ~ W/kT
c ~A + B/T
A positive B positive Demix
A negative B negative Mix
A negative B positive UCST
A positive B negative LCST
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Mean Field (what we have considered) Interactions are random, there is no structuring

Specific Interactions Interactions are not random, there is identity between interacting pairs
 Coulombic Interaction for instance
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Correlations
Dilute: Ideal behavior, 
there are no interactions

Semi-dilute: weak or 
strong interactions are 
possible

With weak interactions the 
system can be treated with 
a “mean field”.  No 
correlation is observed, we 
can use the second virial 
coefficient and Hildebrand 
Model

With strong interactions 
we need to use detailed 
information about 
interactions, correlation 
function or other models
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Virial Coefficient Approach for Weak Interactions (Mean Field)

Consider that two materials mix, A is matrix and B is diluent

B behaves like an ideal gas in A when B is dilute

P = rRT

The presence of B creates a pressure called an osmotic pressure P

This pressure can be measured for particles in a solution such as proteins in water

At higher concentrations with a mean-field we can use a virial expansion to describe the pressure

P = rRT(1 + A2 r + A3 r2 + A4 r3 + …)  Where A2 is the second virial coefficient and reflects binary interactions in a mean field

By comparison with the Van der Waals equation of state where v = 1/r

A2 = b – a/RT where “b” is the “excluded volume” and “a” is the attractive interaction potential for B’s

P/r = energy ~ rRT A2 = r(RT b – a) 
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Virial Coefficient Approach for Weak Interactions (Mean Field)

P/r = energy ~ rRT A2 = r(RT b – a) 

Dilute: Ideal behavior, there 
are no interactions 

Semi-Dilute
A2 = 0  Ideal/critical point
A2 > 0  Miscible
A2 < 0  Immiscible

T = a/(bR) Ideal
T < a/bT    Miscible
T > a/bT    Immiscible

Dilute: Ideal behavior, 
there are no interactions

Semi-dilute
W = 0  Ideal
W < 0 Miscible
W > 0 Immiscible

T = t Ideal
T > t Miscible
T < t Immiscible
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A. How to deal with more than (h(r) or g(r)) binary interactions c(r)

Correlation Function, h(r) A recursive relationship.  
Requires a closure 
relationship to find a 
solution.

Closure relationships:  Random Phase Approximation (RPA) r => 0
 Percus-Yevick Approximation (complex)
 Born-Green Approximation (simpler)
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Strong Interactions (Specific Interactions)

Correlation Function, h(r)

A recursive relationship.  
Requires a closure relationship to find a solution.

Fourier transform of the OZ function; a convolution becomes a product.

Fourier Transform of a structural correlation function is the scattered intensity which is composed of a form factor 
F2(q) and a structure factor S(q).  If we measure a dilute system with no correlations I0(q) and if 
I(q) = S(q) F2(q) = S(q) I0(q) (f/f0)

We can assume a model for c(k) and calculate S(q) = I(q)/I0(q) (f0/f)  Structure factor (the peak part of scattering)
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Correlations
Dilute: Ideal behavior, 
there are no interactions

Semi-dilute: weak or 
strong interactions are 
possible

With weak interactions the 
system can be treated with 
a “mean field”.  No 
correlation is observed, we 
can use the second virial 
coefficient and Hildebrand 
Model

With strong interactions 
we need to use detailed 
information about 
interactions, correlation 
function or other models
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Strong Interactions (Specific Interactions)

Correlation Function, h(r)

A recursive relationship.  
Requires a closure relationship to find a solution.

Percus-Yevick Approximation Closure.

Binary RDF = Total RDF - RDF with no binary interaction

Use a function 𝑦 𝑟 = 𝑒( ) * +& *  then
𝑐 𝑟 = 𝑔 𝑟 − y 𝑟 = 𝑦 𝑟 𝑒+() * − 1 = 𝑦 𝑟 𝑓 𝑟

Use this in the OZ equation yields the RDF with no binary interactions 

g(r) = h(r)

g(r) or h(r)

https://www.chemeurope.com/en/encyclopedia/Percus-Yevick_approximation.html

Binary correlation
Correlation fun. without 
direct interactions
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B. How to deal with more than binary interactions
BBGKY hierarchy (Bogoliubov-Born-Green-Kirkwood-Yvon)

Probability density function in position, 
qi, and momentum, pi, per particle

Liouville Equation

Force acting on particle ”i”

Integrate the Liouville Equation yields a chain of equations relating binary 
interactions with ternary interactions; ternary interactions with quaternary 
interactions etc.  This cannot be solved unless a model is used for fs+1.
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Strong Interactions (Specific Interactions)

Correlation Function, h(r)

A recursive relationship.  
Requires a closure relationship to find a solution.

Closure relationships:  Random Phase Approximation (RPA) r => 0
 Percus-Yevick Approximation; Born-Green Approximation

g(r) = h(r)

For a square well potential: A2

P = rRT(1 + A2 r + A3 r2 + A4 r3 + …) 
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Strong Interactions
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S(q) = f0I(q)/(fI0(q)) 
Structure factor
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Strong Interactions
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Strong Interactions
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Weak Interactions Strong Interactions

I(q,f) = I(q,f0) S(q,f) f/f0

 A2 ~ n
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There are many models, the book mentions the Quasi-Chemical Model which is used in Calphad and ThermoCalc
Elliot and Lira give a reasonable discussion of various models in Chapters 7, 11, 12
Chapter 7
Van der Waals:  Includes excluded volume, ”b”, and attractive interaction “a”

Peng-Robinson: Attractive interaction term is more complicated and includes the acentric factor w. ”a” has a 
temperature dependence.

These equations have a cubic form: 

Models for Interactions Based on a Mean Field Approach
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Hard core model for Van der Waals

Z = PV/RT = 1/(1-br) – (a/RT) r

Compare with Molecular Dynamics (o) 
for Hard Spheres E&W

Hard core no attractive interaction, hP = br
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Margulis one-parameter Model

Chapter 11 Elliot and Lira 

Hildebrand Model

Margulis acid-base Model
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Redlich-Kister Model (asymmetric phase diagrams)

Two-parameter Margulis Model
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Van der Waals Models

Regular Solution Models -SUV
 H  A
-pGT

G = H – ST
H = U + PV
So
G = U + PV – TS
(A = U – TS)

Ignore PV which is small G ~ A

If V ~ S ~ 0 then G = U
This is a regular solution

Van Laar Model

For Symmetric Mean-
Field Models there 
are two main 
problems, 
organizational 
entropy change on 
mixing and changes in 
volume on mixing

Consider 11, 22, and 
12 interactions

Consider Lattice sites 
do not have the same 
volume, V1, V2
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Van Laar Model

Include asymmetry
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Scatchard-Hildebrand Theory
Theory based on Volume Fraction rather than Mole Fraction

d = Solubility Parameter

Volume Fraction

Cohesive Energy Density

U = H – PV 
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Scatchard-Hildebrand Theory
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Scatchard-Hildebrand with Adjustable Parameter
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Flory-Huggins Model for Polymers

Point Masses have no volume
Real molecules have excluded volume
Only the available volume can be used to mix so the entropy of mixing should be modified

w accounts for the available volume
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Flory-Huggins Model for Polymers

r = V2/V1  2 is polymer
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Account for Hydrogen Bonding
MOSCED Model (MOdified Separation of Cohesive Energy Density)

Calculates the infinite dilution activity 
coefficient
This is used in another model to fit parameters at 
infinite dilution to the MOSCED model
Such as Redlich-Kister, van Laar, or below

li dispersion factor
ti is the polarity
qi is .9 to 1
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Account for Hydrogen Bonding
SSCED Model (Simplified Separation of Cohesive Energy Density)
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Local Clustering Models
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For Pure components

Local Clustering Models
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To obtain Helmholz Free energy use 

Need an expression for W as a function of 
temperature

Local Clustering Models



46



47

Wilson’s Equation

Temperature dependence of W

Two activation energies 1 around 2 and 2 around 1

Assume G ~ A  (PV is insignificant)

Break G into a residual (energetic) contribution that 
vanishes at T => ∞ and a combinatorial (size and 
shape) contribution

Temperature dependence of W
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Two activation energies 1 around 2 and 2 around 1

Assume G ~ A  (PV is insignificant)

Break G into a residual (energetic) contribution that vanishes at T => ∞ 
and a combinatorial (size and shape) contribution

Use Flory’s expression for the combinatorial contribution

Wilson’s Equation Temperature dependence of W
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Wilson’s Equation Temperature dependence of W
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Non-Random Two Liquid Model (NRTL)
G = U + PV –ST  if you ignore PV and ST and say G ~ U then an integration isn’t needed
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Universal Quasi-Chemical Model (UNIQUAC)
Temperature dependence of W depends on surface area rather than volume
Interactions occur at surfaces     qi ~ surface area of component ”i”

Surface Area Fraction

Last term accounts for non-spherical surface area effects on mixing (branched chains)
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Guggenheim Modification to Universal Quasi-Chemical Model (UNIQUAC)

r is volume ratio, q is surface area ratio
Both obtained from group contribution method
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Universal Functional Activity Coefficient Model (UNIFAC)

Combinatorial term same as UNIQUAC (surface area based)

Residual term involves group contribution rather than whole molecule
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Solutions with multiple sub-lattices

NaCl-KBr    or   Spinels AB2O4

Cation sublattice
Anion sublattice

Octahedral sublattice
Tetrahedral sublattice

Disorder in the 
placement of Na+ and 
K+
And Cl- and Br- leads to 
entropy
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Solutions with multiple sub-lattices

Ideal Solution Model (Temkin Model)
Cations surrounded by anions in crystal and in the melt
Quasi-lattice approach
Random mixing of cations and anions on their respective sub-lattices
Consider a system AC and BC
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Solutions with multiple sub-lattices

Regular Solution Model (Temkin Model)
Need to account for next nearest neighbor interactions since nearest neighbor 
interactions do not change, that is Na+ Cl- interactions, you need Na+ K+ interactions
There are ½ zN nearest neighbor as well as next nearest neighbor interactions

Same as for regular solution
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Solutions with multiple sub-lattices

Same as for regular solution
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Order-disorder systems
s = Order parameter a number that goes from 0 for disordered to 1 for 
ordered

Convergent ordering occurs when two lattice sites are equivalent in the 
disordered state and crystallographically distinct in the ordered state
This occurs in solid solutions
Bragg and Williams
Solution of A and B with lattice sites a and b
AB forms at low temperatures  A at a sites is ½ (1 + s)
NA + NB = 2N     zN interactions
Disordered State Regular Solution

s = Order parameter 

Bragg and Williams
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Order-disorder systems

Disordered State Regular Solution

Ideal Solution

H = U + PV

Bragg and Williams
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Second Order Transition

Bragg and Williams
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Order-disorder systems

Non-Convergent ordering occurs when two lattice sites are distinct in the 
disordered state and distinct in the ordered state
Spinels:  One tetrahedral and two octahedral cations  AB2O4
A can be in tetrahedral or octahedral sites
Normal Spinel   x = 0
Inverse Spinel   x = 1 
Random Spinel   x = 2/3

S = 0 for x = 0   Regular Spinel

Bragg and Williams
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Ordered and 
Regular Spinels 
disorder at high 
temperature to 
increase entropy
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For a Normal Spinel the disordering process is:
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Mass-action law treatment of defect equilibria

Perovskite type oxide

Non-stoichiometric Compounds

Three sublattices
A 12 coordination 
B 6 coordination number
O

A open circles 12
Black B 6
Grey O

O and vacancies on the O lattice randomly arranged

B atoms are reduced by oxygen vacancies
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Solid Solution Approach

Non-stoichiometric Compounds

Sum over all vibrational states “s”
Over all configurations “c”

Configurations with degeneracy gc and 
Gibbs energy of formation DfGc

Proposition: A perovskite ABO3-d is made up of ABO3 and ABO2.5 in an ideal solution (no defect defect interactions)
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